Personalized Healthcare Research: Systematic Review with ☸️SAIMSARA.



saimsara.com Download PDF

Abstract: This paper aims to systematically review the current landscape of personalized healthcare research, synthesizing key technological advancements, application areas, and associated challenges as identified in recent literature. The review utilises 1882 studies with 380011 total participants (naïve ΣN). AI-driven diagnostic agents and systems demonstrate a median diagnostic accuracy of 95.4% (range: 85-98.18%) across various healthcare applications, suggesting significant potential for enhancing precision in personalized care. This broad potential extends across diverse conditions and populations, promising more tailored and effective healthcare solutions. However, the Lack of Standardized Study Designs in much of the current literature significantly limits the certainty and generalizability of these promising findings. Therefore, continued investment in developing robust ethical AI frameworks and conducting large-scale, rigorously designed clinical trials is essential to translate these technological advancements into equitable and impactful personalized healthcare practices.

Review Stats
Identification of studies via EPMC (titles/abstracts) Identification Screening Included Records identified:n=3123Records excluded:n=0 Records assessed for eligibilityn=3123Records excluded:n=1241 Studies included in reviewn=1882 PRISMA Diagram generated by ☸️ SAIMSARA
⛛OSMA Triangle Effect-of Predictor → Outcome personalized healthcare research  →  Outcome Beneficial for patients ΣN=123314 (32%) Harmful for patients ΣN=9569 (3%) Neutral ΣN=247128 (65%) 0 ⛛OSMA Triangle generated by ☸️SAIMSARA
Show OSMA legend
Outcome-Sentiment Meta-Analysis (OSMA): (LLM-only)
Frame: Effect-of Predictor → Outcome • Source: Europe PMC
Outcome: Outcome Typical timepoints: 3-day, peri/post-op. Reported metrics: %, CI, p.
Common endpoints: Common endpoints: complications, qol, functional.
Predictor: personalized healthcare research — exposure/predictor. Routes seen: oral, topical, intravenous, iv. Typical comparator: control, standard messages, generic reminders, general bereavement support….

  • 1) Beneficial for patients — Outcome with personalized healthcare research — [2], [6], [14], [23], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [112], [113], [114], [115], [116], [117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141], [142], [143], [144], [145], [146], [147], [148], [149], [150], [154], [155], [157], [158], [159], [160], [161], [162], [163], [165], [167], [170], [171], [172], [174], [175], [176], [177], [179], [180], [181], [182], [184], [189], [190], [193], [195], [196], [200], [201], [202], [203], [206], [207], [208], [212], [213], [217], [220], [221], [222], [223], [225], [228], [229], [231], [232], [233], [234], [235], [236], [237], [238], [239], [240], [241], [242], [243], [244], [246], [247], [248], [249], [250], [255], [260], [265], [268], [272], [273], [280], [284], [287], [296], [297], [299], [351], [352], [353], [354], [355], [356], [357], [358], [359], [360], [361], [362], [363], [364], [365], [366], [367], [368], [369], [370], [371], [372], [373], [374], [375], [376], [377], [378], [379], [380], [381], [382], [383], [384], [385], [386], [387], [388], [389], [390], [391], [392], [393], [394], [395], [396], [397], [398], [399], [400], [401], [402], [403], [404], [405], [406], [407], [408], [409], [410], [411], [412], [413], [414], [415], [416], [417], [418], [419], [420], [421], [422], [423], [424], [425], [426], [427], [428], [429], [430], [431], [432], [433], [434], [435], [436], [437], [438], [439], [440], [441], [442], [443], [444], [445], [446], [447], [448], [449], [450], [451], [452], [453], [454], [455], [456], [457], [458], [459], [460], [461], [462], [463], [464], [465], [466], [467], [469], [470], [471], [472], [473], [474], [475], [476], [477], [478], [479], [480], [481], [482], [483], [484], [485], [486], [487], [488], [489], [490], [491], [492], [493], [494], [495], [497], [498], [499], [500], [551], [552], [556], [557], [558], [560], [562], [563], [564], [565], [566], [568], [569], [570], [571], [572], [576], [577], [578], [579], [580], [581], [582], [584], [586], [588], [589], [590], [592], [593], [594], [595], [596], [597], [600], [613], [651], [655], [657], [658], [670], [673], [674], [676], [679], [684], [686], [688], [689], [692], [694], [701], [702], [704], [705], [706], [707], [710], [712], [713], [714], [715], [717], [725], [728], [729], [735], [738], [740], [742], [743], [744], [745], [747], [748], [751], [752], [753], [754], [755], [756], [757], [758], [759], [760], [761], [762], [763], [764], [765], [766], [767], [768], [769], [770], [771], [772], [773], [774], [775], [776], [777], [778], [779], [780], [781], [782], [783], [784], [785], [786], [787], [788], [789], [790], [791], [792], [793], [794], [795], [796], [797], [798], [799], [800], [801], [802], [804], [805], [806], [807], [808], [809], [810], [812], [813], [814], [815], [816], [817], [818], [819], [820], [822], [823], [824], [825], [826], [827], [828], [829], [830], [834], [835], [836], [837], [838], [839], [842], [843], [844], [845], [846], [847], [848], [850], [957], [967], [973], [979], [1002], [1003], [1004], [1005], [1008], [1010], [1011], [1016], [1018], [1020], [1021], [1023], [1024], [1026], [1033], [1034], [1036], [1038], [1041], [1044], [1048], [1054], [1059], [1063], [1064], [1081], [1082], [1083], [1085], [1088], [1092], [1096], [1101], [1102], [1103], [1104], [1105], [1106], [1107], [1108], [1109], [1110], [1111], [1112], [1113], [1114], [1115], [1116], [1117], [1118], [1119], [1120], [1121], [1122], [1124], [1125], [1126], [1127], [1128], [1129], [1130], [1131], [1132], [1133], [1134], [1135], [1136], [1137], [1138], [1139], [1140], [1142], [1143], [1144], [1145], [1146], [1147], [1148], [1149], [1150], [1151], [1152], [1153], [1154], [1155], [1156], [1157], [1158], [1159], [1160], [1161], [1163], [1164], [1165], [1166], [1167], [1168], [1169], [1170], [1171], [1172], [1174], [1175], [1176], [1177], [1178], [1179], [1180], [1181], [1182], [1183], [1184], [1185], [1186], [1187], [1188], [1189], [1190], [1192], [1193], [1194], [1195], [1196], [1197], [1198], [1200], [1208], [1221], [1247], [1248], [1302], [1303], [1305], [1306], [1307], [1308], [1309], [1311], [1312], [1313], [1314], [1315], [1316], [1317], [1318], [1320], [1321], [1322], [1323], [1324], [1326], [1328], [1329], [1330], [1331], [1332], [1333], [1334], [1335], [1336], [1337], [1338], [1339], [1340], [1341], [1342], [1343], [1344], [1345], [1346], [1347], [1348], [1349], [1350], [1353], [1357], [1372], [1377], [1378], [1384], [1385], [1401], [1402], [1403], [1404], [1405], [1406], [1407], [1410], [1411], [1413], [1414], [1415], [1416], [1417], [1418], [1419], [1420], [1421], [1422], [1423], [1424], [1426], [1427], [1428], [1429], [1430], [1431], [1433], [1434], [1435], [1436], [1437], [1438], [1439], [1440], [1441], [1442], [1443], [1444], [1445], [1446], [1447], [1448], [1449], [1450], [1487], [1489], [1493], [1504], [1505], [1513], [1515], [1520], [1522], [1554], [1567], [1571], [1585], [1605], [1620], [1637], [1655], [1659], [1693], [1702], [1734], [1773], [1776], [1780], [1799], [1801], [1803], [1807], [1811], [1812], [1813], [1820], [1821], [1823], [1845], [1850] — ΣN=123314
  • 2) Harmful for patients — Outcome with personalized healthcare research — [192], [518], [631], [726], [821], [853], [886], [896], [1007], [1025], [1123], [1191], [1199], [1319], [1327], [1399], [1408], [1425], [1452], [1510], [1614], [1683], [1881] — ΣN=9569
  • 3) No clear effect — Outcome with personalized healthcare research — [1], [3], [4], [5], [7], [8], [9], [10], [11], [12], [13], [15], [16], [17], [18], [19], [20], [21], [22], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [111], [151], [152], [153], [156], [164], [166], [168], [169], [173], [178], [183], [185], [186], [187], [188], [191], [194], [197], [198], [199], [204], [205], [209], [210], [211], [214], [215], [216], [218], [219], [224], [226], [227], [230], [245], [251], [252], [253], [254], [256], [257], [258], [259], [261], [262], [263], [264], [266], [267], [269], [270], [271], [274], [275], [276], [277], [278], [279], [281], [282], [283], [285], [286], [288], [289], [290], [291], [292], [293], [294], [295], [298], [300], [301], [302], [303], [304], [305], [306], [307], [308], [309], [310], [311], [312], [313], [314], [315], [316], [317], [318], [319], [320], [321], [322], [323], [324], [325], [326], [327], [328], [329], [330], [331], [332], [333], [334], [335], [336], [337], [338], [339], [340], [341], [342], [343], [344], [345], [346], [347], [348], [349], [350], [468], [496], [501], [502], [503], [504], [505], [506], [507], [508], [509], [510], [511], [512], [513], [514], [515], [516], [517], [519], [520], [521], [522], [523], [524], [525], [526], [527], [528], [529], [530], [531], [532], [533], [534], [535], [536], [537], [538], [539], [540], [541], [542], [543], [544], [545], [546], [547], [548], [549], [550], [553], [554], [555], [559], [561], [567], [573], [574], [575], [583], [585], [587], [591], [598], [599], [601], [602], [603], [604], [605], [606], [607], [608], [609], [610], [611], [612], [614], [615], [616], [617], [618], [619], [620], [621], [622], [623], [624], [625], [626], [627], [628], [629], [630], [632], [633], [634], [635], [636], [637], [638], [639], [640], [641], [642], [643], [644], [645], [646], [647], [648], [649], [650], [652], [653], [654], [656], [659], [660], [661], [662], [663], [664], [665], [666], [667], [668], [669], [671], [672], [675], [677], [678], [680], [681], [682], [683], [685], [687], [690], [691], [693], [695], [696], [697], [698], [699], [700], [703], [708], [709], [711], [716], [718], [719], [720], [721], [722], [723], [724], [727], [730], [731], [732], [733], [734], [736], [737], [739], [741], [746], [749], [750], [803], [811], [831], [832], [833], [840], [841], [849], [851], [852], [854], [855], [856], [857], [858], [859], [860], [861], [862], [863], [864], [865], [866], [867], [868], [869], [870], [871], [872], [873], [874], [875], [876], [877], [878], [879], [880], [881], [882], [883], [884], [885], [887], [888], [889], [890], [891], [892], [893], [894], [895], [897], [898], [899], [900], [901], [902], [903], [904], [905], [906], [907], [908], [909], [910], [911], [912], [913], [914], [915], [916], [917], [918], [919], [920], [921], [922], [923], [924], [925], [926], [927], [928], [929], [930], [931], [932], [933], [934], [935], [936], [937], [938], [939], [940], [941], [942], [943], [944], [945], [946], [947], [948], [949], [950], [951], [952], [953], [954], [955], [956], [958], [959], [960], [961], [962], [963], [964], [965], [966], [968], [969], [970], [971], [972], [974], [975], [976], [977], [978], [980], [981], [982], [983], [984], [985], [986], [987], [988], [989], [990], [991], [992], [993], [994], [995], [996], [997], [998], [999], [1000], [1001], [1006], [1009], [1012], [1013], [1014], [1015], [1017], [1019], [1022], [1027], [1028], [1029], [1030], [1031], [1032], [1035], [1037], [1039], [1040], [1042], [1043], [1045], [1046], [1047], [1049], [1050], [1051], [1052], [1053], [1055], [1056], [1057], [1058], [1060], [1061], [1062], [1065], [1066], [1067], [1068], [1069], [1070], [1071], [1072], [1073], [1074], [1075], [1076], [1077], [1078], [1079], [1080], [1084], [1086], [1087], [1089], [1090], [1091], [1093], [1094], [1095], [1097], [1098], [1099], [1100], [1141], [1162], [1173], [1201], [1202], [1203], [1204], [1205], [1206], [1207], [1209], [1210], [1211], [1212], [1213], [1214], [1215], [1216], [1217], [1218], [1219], [1220], [1222], [1223], [1224], [1225], [1226], [1227], [1228], [1229], [1230], [1231], [1232], [1233], [1234], [1235], [1236], [1237], [1238], [1239], [1240], [1241], [1242], [1243], [1244], [1245], [1246], [1249], [1250], [1251], [1252], [1253], [1254], [1255], [1256], [1257], [1258], [1259], [1260], [1261], [1262], [1263], [1264], [1265], [1266], [1267], [1268], [1269], [1270], [1271], [1272], [1273], [1274], [1275], [1276], [1277], [1278], [1279], [1280], [1281], [1282], [1283], [1284], [1285], [1286], [1287], [1288], [1289], [1290], [1291], [1292], [1293], [1294], [1295], [1296], [1297], [1298], [1299], [1300], [1301], [1304], [1310], [1325], [1351], [1352], [1354], [1355], [1356], [1358], [1359], [1360], [1361], [1362], [1363], [1364], [1365], [1366], [1367], [1368], [1369], [1370], [1371], [1373], [1374], [1375], [1376], [1379], [1380], [1381], [1382], [1383], [1386], [1387], [1388], [1389], [1390], [1391], [1392], [1393], [1394], [1395], [1396], [1397], [1398], [1400], [1409], [1412], [1432], [1451], [1453], [1454], [1455], [1456], [1457], [1458], [1459], [1460], [1461], [1462], [1463], [1464], [1465], [1466], [1467], [1468], [1469], [1470], [1471], [1472], [1473], [1474], [1475], [1476], [1477], [1478], [1479], [1480], [1481], [1482], [1483], [1484], [1485], [1486], [1488], [1490], [1491], [1492], [1494], [1495], [1496], [1497], [1498], [1499], [1500], [1501], [1502], [1503], [1506], [1507], [1508], [1509], [1511], [1512], [1514], [1516], [1517], [1518], [1519], [1521], [1523], [1524], [1525], [1526], [1527], [1528], [1529], [1530], [1531], [1532], [1533], [1534], [1535], [1536], [1537], [1538], [1539], [1540], [1541], [1542], [1543], [1544], [1545], [1546], [1547], [1548], [1549], [1550], [1551], [1552], [1553], [1555], [1556], [1557], [1558], [1559], [1560], [1561], [1562], [1563], [1564], [1565], [1566], [1568], [1569], [1570], [1572], [1573], [1574], [1575], [1576], [1577], [1578], [1579], [1580], [1581], [1582], [1583], [1584], [1586], [1587], [1588], [1589], [1590], [1591], [1592], [1593], [1594], [1595], [1596], [1597], [1598], [1599], [1600], [1601], [1602], [1603], [1604], [1606], [1607], [1608], [1609], [1610], [1611], [1612], [1613], [1615], [1616], [1617], [1618], [1619], [1621], [1622], [1623], [1624], [1625], [1626], [1627], [1628], [1629], [1630], [1631], [1632], [1633], [1634], [1635], [1636], [1638], [1639], [1640], [1641], [1642], [1643], [1644], [1645], [1646], [1647], [1648], [1649], [1650], [1651], [1652], [1653], [1654], [1656], [1657], [1658], [1660], [1661], [1662], [1663], [1664], [1665], [1666], [1667], [1668], [1669], [1670], [1671], [1672], [1673], [1674], [1675], [1676], [1677], [1678], [1679], [1680], [1681], [1682], [1684], [1685], [1686], [1687], [1688], [1689], [1690], [1691], [1692], [1694], [1695], [1696], [1697], [1698], [1699], [1700], [1701], [1703], [1704], [1705], [1706], [1707], [1708], [1709], [1710], [1711], [1712], [1713], [1714], [1715], [1716], [1717], [1718], [1719], [1720], [1721], [1722], [1723], [1724], [1725], [1726], [1727], [1728], [1729], [1730], [1731], [1732], [1733], [1735], [1736], [1737], [1738], [1739], [1740], [1741], [1742], [1743], [1744], [1745], [1746], [1747], [1748], [1749], [1750], [1751], [1752], [1753], [1754], [1755], [1756], [1757], [1758], [1759], [1760], [1761], [1762], [1763], [1764], [1765], [1766], [1767], [1768], [1769], [1770], [1771], [1772], [1774], [1775], [1777], [1778], [1779], [1781], [1782], [1783], [1784], [1785], [1786], [1787], [1788], [1789], [1790], [1791], [1792], [1793], [1794], [1795], [1796], [1797], [1798], [1800], [1802], [1804], [1805], [1806], [1808], [1809], [1810], [1814], [1815], [1816], [1817], [1818], [1819], [1822], [1824], [1825], [1826], [1827], [1828], [1829], [1830], [1831], [1832], [1833], [1834], [1835], [1836], [1837], [1838], [1839], [1840], [1841], [1842], [1843], [1844], [1846], [1847], [1848], [1849], [1851], [1852], [1853], [1854], [1855], [1856], [1857], [1858], [1859], [1860], [1861], [1862], [1863], [1864], [1865], [1866], [1867], [1868], [1869], [1870], [1871], [1872], [1873], [1874], [1875], [1876], [1877], [1878], [1879], [1880], [1882] — ΣN=247128



1) Introduction
Personalized healthcare represents a paradigm shift from a one-size-fits-all approach to patient management, emphasizing tailored interventions based on individual characteristics such as genetic makeup, lifestyle, and environmental factors. This evolving field aims to optimize diagnostic precision, therapeutic efficacy, and preventive strategies, ultimately enhancing patient outcomes and healthcare quality. The rapid integration of advanced technologies, particularly artificial intelligence (AI) and digital health tools, is accelerating this transformation, promising more proactive, efficient, and patient-centered care models.

2) Aim
This paper aims to systematically review the current landscape of personalized healthcare research, synthesizing key technological advancements, application areas, and associated challenges as identified in recent literature.

3) Methods
Systematic review with multilayer AI research agent: keyword normalization, retrieval & structuring, and paper synthesis (see SAIMSARA About section for details).


4) Results
4.1 Study characteristics:
The review encompasses a broad range of studies, predominantly featuring mixed-methods designs or unspecified methodologies (N/A), with a smaller number of cohort studies and randomized controlled trials. Research populations span diverse areas, including individuals with chronic conditions (e.g., hypertension, diabetes, COPD, cardiovascular diseases, cancer), elderly individuals, pediatric populations, and those with specific neurological or mental health disorders. Most studies lack specified sample sizes, follow-up periods, or detailed statistical reporting, focusing instead on conceptual frameworks, technological development, and preliminary efficacy. The majority of the research was published in 2025, indicating a highly current and rapidly evolving field.

4.2 Main numerical result aligned to the query:
Across various studies evaluating AI-driven diagnostic agents and systems for personalized healthcare, the median reported accuracy for diagnostic tasks was 95.4% [95, 172, 332, 334, 575, 609, 633, 651, 693, 895]. This ranged from 85% for pooled diagnostic accuracy in psychiatry [633] to 98.18% for lung cancer classification using CT scans [334]. Other metrics, such as F1 scores, sensitivity, and specificity, also demonstrated high performance, supporting the potential of AI in enhancing diagnostic precision for personalized care.

4.3 Topic synthesis:


5) Discussion
5.1 Principal finding:
The central finding indicates that AI-driven diagnostic agents and systems demonstrate a median diagnostic accuracy of 95.4% (range: 85-98.18%) across various healthcare applications, suggesting significant potential for enhancing precision in personalized care [95, 172, 332, 334, 575, 609, 633, 651, 693, 895].

5.2 Clinical implications:


5.3 Research implications / key gaps:


5.4 Limitations:


5.5 Future directions:


6) Conclusion
AI-driven diagnostic agents and systems demonstrate a median diagnostic accuracy of 95.4% (range: 85-98.18%) across various healthcare applications, suggesting significant potential for enhancing precision in personalized care [95, 172, 332, 334, 575, 609, 633, 651, 693, 895]. This broad potential extends across diverse conditions and populations, promising more tailored and effective healthcare solutions. However, the Lack of Standardized Study Designs in much of the current literature significantly limits the certainty and generalizability of these promising findings. Therefore, continued investment in developing robust ethical AI frameworks and conducting large-scale, rigorously designed clinical trials is essential to translate these technological advancements into equitable and impactful personalized healthcare practices.

References
SAIMSARA Session Index — session.json

Figure 1. Publication-year distribution of included originals
Figure 1. Publication-year distribution of included originals

Figure 2. Study-design distribution of included originals
Figure 2. Study-design distribution

Figure 3. Study-type (directionality) distribution of included originals
Figure 3. Directionality distribution

Figure 4. Main extracted research topics
Figure 4. Main extracted research topics (Results)

Figure 5. Limitations of current studies (topics)
Figure 5. Limitations of current studies (topics)

Figure 6. Future research directions (topics)
Figure 6. Future research directions (topics)